HyperAI초신경

Neural Architecture Search On Imagenet

평가 지표

Accuracy
FLOPs
Params
Top-1 Error Rate

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름AccuracyFLOPsParamsTop-1 Error Rate
blockwisely-supervised-neural-architecture78.4611M6.4M21.6
b-darts-beta-decay-regularization-for---23.9
hardcore-nas-hard-constrained-differentiable75.9--24.1
darts-differentiable-architecture-search73.3-4.926.7
m-darts-model-uncertainty-aware78.76-602M21.24
alphanet-improved-training-of-supernet-with79.2317M-20.8
neural-architecture-transfer80.5-9.1M19.5
evolving-neural-architecture-using-one-shot74.9-4.925.1
single-path-one-shot-neural-architecture75.1---
densely-connected-search-space-for-more-479M-23.9
hardcore-nas-hard-constrained-differentiable80.1--19.9
isynet-convolutional-neural-networks-design---22.7
hardcore-nas-hard-constrained-differentiable79.5--20.5
idarts-improving-darts-by-node-normalization--5.1M24.7
sharpdarts-faster-and-more-accurate74.1-4.9M25.1
deepmad-mathematical-architecture-design-for83.98.7G50M16.1
alphanet-improved-training-of-supernet-with79.0279M-21.0
alphanet-improved-training-of-supernet-with80.8709M-19.2
evolving-neural-architecture-using-one-shot75.6-5.324.4
fairnas-rethinking-evaluation-fairness-of75.1-4.5M24.9
single-path-one-shot-neural-architecture74.7---
eeea-net-an-early-exit-evolutionary-neural76.2--23.8
attentivenas-improving-neural-architecture80.1--19.9
attentivenas-improving-neural-architecture77.3--22.7
alphanet-improved-training-of-supernet-with77.9203M-22.1
uninet-unified-architecture-search-with-1-555M11.5M19.2
nasvit-neural-architecture-search-for81.4591M-18.6
blockwisely-supervised-neural-architecture77.8466M5.3M22.2
layernas-neural-architecture-search-in--3.7M31
how-does-topology-of-neural-architectures73.3393M3.7M26.7
isynet-convolutional-neural-networks-design---23.16
alphanet-improved-training-of-supernet-with79.4357M-20.6
alphanet-improved-training-of-supernet-with80.3491M-19.7
hardcore-nas-hard-constrained-differentiable77.1--22.9
hardcore-nas-hard-constrained-differentiable78.8--21.2
fbnetv5-neural-architecture-search-for-726M-18.2
nasvit-neural-architecture-search-for78.2208M-21.8
sharpdarts-faster-and-more-accurate76.0-8.3M24.0
du-darts-decreasing-the-uncertainty-of75.9-5.3M24.1
alphanet-improved-training-of-supernet-with80.6596M-19.4
nasvit-neural-architecture-search-for79.7309M-20.3
once-for-all-train-one-network-and-specialize76.9--23.1
hardcore-nas-hard-constrained-differentiable77.9--22.1
neural-architecture-transfer79.9-9.1M20.1
isynet-convolutional-neural-networks-design---21.45
isynet-convolutional-neural-networks-design---24.55
greedynas-towards-fast-one-shot-nas-with76.8-5.2M23.2
bignas-scaling-up-neural-architecture-search78.9-5.5M21.1
sgas-sequential-greedy-architecture-search75.9-5.4M24.1
nsganetv2-evolutionary-multi-objective80.4-8.7M19.6
fbnetv5-neural-architecture-search-for81.7685M-18.3
fbnetv3-joint-architecture-recipe-search79.6--20.4
geometry-aware-gradient-algorithms-for-neural--5.624
gpunet-searching-the-deployable-convolution-3.66G10.6M17.5
single-path-one-shot-neural-architecture75.3---
fbnetv2-differentiable-neural-architecture77.2--22.8
blockwisely-supervised-neural-architecture77.5406M4.9M22.5
fairnas-rethinking-evaluation-fairness-of75.34-4.6M24.7
bignas-scaling-up-neural-architecture-search76.5-4.5M23.5
neural-architecture-search-for-lightweight77.7--22.3
layernas-neural-architecture-search-in--9.7M21.4
neural-architecture-search-for-lightweight76.5--23.5
atomnas-fine-grained-end-to-end-neural-177.2-5.5M22.8
fairnas-rethinking-evaluation-fairness-of74.69-4.4M25.4
muxconv-information-multiplexing-in76.6-4.0M23.4
memnas-memory-efficient-neural-architecture74.1--25.9
fbnetv2-differentiable-neural-architecture73.2--26.8
optimizing-neural-architecture-search-using70.49--29.51
sedona-search-for-decoupled-neural-networks---21.09
evolving-neural-architecture-using-one-shot75.6-5.124.4
isynet-convolutional-neural-networks-design---22.15
layernas-neural-architecture-search-in--5.2M22.9
neural-architecture-transfer77.5-6.0M22.5
scarletnas-bridging-the-gap-between76.3-6.5M23.7
fbnetv2-differentiable-neural-architecture68.3--31.7
모델 7675.43--24.57
zen-nas-a-zero-shot-nas-for-high-performance77.81.7G30.122.2
alphax-exploring-neural-architectures-with-175.5-5.4M24.5
how-does-topology-of-neural-architectures72.9200M2.3M27.1
muxconv-information-multiplexing-in75.3-3.4M24.7
exploring-randomly-wired-neural-networks-for-583M5.6M25.3
attentivenas-improving-neural-architecture79.8--20.2
atomnas-fine-grained-end-to-end-neural-177.6-5.9M22.4
fbnetv5-neural-architecture-search-for77.2215M-22.8
pc-darts-partial-channel-connections-for75.8-5.3M24.2
layernas-neural-architecture-search-in--5.1M24.4
isynet-convolutional-neural-networks-design---19.84
nsganetv2-evolutionary-multi-objective79.1-8.0M20.9
zen-nas-a-zero-shot-nas-for-high-performance83.622G180M16.4
gpunet-searching-the-deployable-convolution-720M6.2M20.3
gpunet-searching-the-deployable-convolution-15.6G19M16.4
a-generic-graph-based-neural-architecture75.9-5.6M24.1
fbnetv3-joint-architecture-recipe-search78.0--22.0
scarletnas-bridging-the-gap-between75.6-6.0M24.4
nasvit-neural-architecture-search-for81.8757M-18.2
proxylessnas-direct-neural-architecture75.1-5.1M24.9
fbnetv3-joint-architecture-recipe-search82.3--17.7
fair-darts-eliminating-unfair-advantages-in---22.8
atomnas-fine-grained-end-to-end-neural-176.3-4.7M23.7
hardcore-nas-hard-constrained-differentiable78.3--21.7
bossnas-exploring-hybrid-cnn-transformers82.2--17.8
attentivenas-improving-neural-architecture78.4--21.6
hardcore-nas-hard-constrained-differentiable77.4--22.6
eeea-net-an-early-exit-evolutionary-neural74.3--25.7
hardcore-nas-hard-constrained-differentiable76.5--23.5
greedynas-towards-fast-one-shot-nas-with76.2-4.7M23.8
muxconv-information-multiplexing-in71.6-2.4M28.4
nasvit-neural-architecture-search-for81.0528M-19.0
drnas-dirichlet-neural-architecture-search--5.7M23.7
muxconv-information-multiplexing-in66.7-1.8M33.3
nsganetv2-evolutionary-multi-objective77.4-6.1M22.6
nsganetv2-evolutionary-multi-objective78.3-7.7M21.7
attentivenas-improving-neural-architecture78.8--21.2
attentivenas-improving-neural-architecture79.1--20.9
neural-architecture-transfer78.6-7.7M21.4
idarts-improving-darts-by-node-normalization--5.1M25.2
hardcore-nas-hard-constrained-differentiable78.1--21.9
scarletnas-bridging-the-gap-between76.9-6.7M23.1
hardcore-nas-hard-constrained-differentiable78.9--21.1
greedynas-towards-fast-one-shot-nas-with77.1-6.5M22.9
blockwisely-supervised-neural-architecture77.1348M4.2M22.9
bignas-scaling-up-neural-architecture-search79.5-6.4M20.5
isynet-convolutional-neural-networks-design---20.59
fbnetv2-differentiable-neural-architecture76.0--24.0
neural-architecture-search-using-stable-rank76.1-5.6M23.9
nasvit-neural-architecture-search-for80.5421M-19.5
shapley-nas-discovering-operation-1--5.4M23.9
fbnetv3-joint-architecture-recipe-search80.4--19.6
sedona-search-for-decoupled-neural-networks---20.2
semi-supervised-neural-architecture-search76.5--23.5
noisy-differentiable-architecture-search77.9-5.5M22.1
progressive-neural-architecture-search--5.1-
모델 13374.0-5.326.0
alphanet-improved-training-of-supernet-with80.0444M-20.0
neural-architecture-search-with-gbdt76.5-6.4M23.5