HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
이상치 탐지
Anomaly Detection On Unlabeled Cifar 10 Vs
Anomaly Detection On Unlabeled Cifar 10 Vs
평가 지표
AUROC
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
AUROC
Paper Title
Repository
Input Complexity (PixelCNN++)
53.5
Input complexity and out-of-distribution detection with likelihood-based generative models
SSD
89.6
SSD: A Unified Framework for Self-Supervised Outlier Detection
MeanShifted
90.0
Mean-Shifted Contrastive Loss for Anomaly Detection
Likelihood (Glow)
58.2
Input complexity and out-of-distribution detection with likelihood-based generative models
PsudoLabels ResNet-18
90.8
Out-of-Distribution Detection Without Class Labels
-
CSI
89.3
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PsudoLabels ViT
96.7
Out-of-Distribution Detection Without Class Labels
-
PsudoLabels ResNet-152
93.3
Out-of-Distribution Detection Without Class Labels
-
Likelihood (PixelCNN++)
52.6
Input complexity and out-of-distribution detection with likelihood-based generative models
SCAN Features
90.2
Out-of-Distribution Detection Without Class Labels
-
Input Complexity (Glow)
73.6
Input complexity and out-of-distribution detection with likelihood-based generative models
GOAD
89.2
Classification-Based Anomaly Detection for General Data
MTL
82.92
Shifting Transformation Learning for Out-of-Distribution Detection
-
0 of 13 row(s) selected.
Previous
Next