HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 이상치 탐지
  4. Anomaly Detection On Unlabeled Cifar 10 Vs

Anomaly Detection On Unlabeled Cifar 10 Vs

평가 지표

AUROC

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
AUROC
Paper TitleRepository
Input Complexity (PixelCNN++)53.5Input complexity and out-of-distribution detection with likelihood-based generative models-
SSD89.6SSD: A Unified Framework for Self-Supervised Outlier Detection-
MeanShifted90.0Mean-Shifted Contrastive Loss for Anomaly Detection-
Likelihood (Glow)58.2Input complexity and out-of-distribution detection with likelihood-based generative models-
PsudoLabels ResNet-1890.8Out-of-Distribution Detection Without Class Labels-
CSI89.3CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances-
PsudoLabels ViT96.7Out-of-Distribution Detection Without Class Labels-
PsudoLabels ResNet-15293.3Out-of-Distribution Detection Without Class Labels-
Likelihood (PixelCNN++)52.6Input complexity and out-of-distribution detection with likelihood-based generative models-
SCAN Features90.2Out-of-Distribution Detection Without Class Labels-
Input Complexity (Glow)73.6Input complexity and out-of-distribution detection with likelihood-based generative models-
GOAD89.2Classification-Based Anomaly Detection for General Data-
MTL82.92Shifting Transformation Learning for Out-of-Distribution Detection-
0 of 13 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili