HyperAI초신경

Anomaly Detection On Shanghaitech

평가 지표

AUC

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름AUC
follow-the-rules-reasoning-for-video-anomaly85.2%
videopatchcore-an-effective-method-to85.1%
an-exploratory-study-on-human-centric-video80.6%
bounding-boxes-and-probabilistic-graphical61.28%
eval-explainable-video-anomaly-localization76.63%
ubnormal-new-benchmark-for-supervised-open83.7%
learning-regularity-in-skeleton-trajectories73.40%
video-anomaly-detection-by-solving-decoupled84.3%
multi-timescale-trajectory-prediction-for76.03%
any-shot-sequential-anomaly-detection-in71.6%
self-supervised-predictive-convolutional83.6%
ssmtl-revisiting-self-supervised-multi-task83.8%
stan-spatio-temporal-adversarial-networks-for76.2%
attention-based-residual-autoencoder-for73.6
context-recovery-and-knowledge-retrieval-a83.7%
a-revisit-of-sparse-coding-based-anomaly68.0%
spatio-temporal-predictive-tasks-for-abnormal77.1%
diversity-measurable-anomaly-detection78.8%
divide-and-conquer-in-video-anomaly-detection87.72%
mulde-multiscale-log-density-estimation-via86.7%
attribute-based-representations-for-accurate85.94%
mulde-multiscale-log-density-estimation-via81.3%
ssmtl-revisiting-self-supervised-multi-task82.9%
anomaly-detection-in-video-via-self82.4%
regularity-learning-via-explicit-distribution83.35
a-scene-agnostic-framework-with-adversarial82.7%
self-supervised-masked-convolutional83.6%
self-supervised-predictive-convolutional-
making-anomalies-more-anomalous-video-anomaly76.5%
object-centric-auto-encoders-and-dummy78.7%
normalizing-flows-for-human-pose-anomaly85.9%