HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 이상치 탐지
  4. Anomaly Detection On One Class Imagenet 30

Anomaly Detection On One Class Imagenet 30

평가 지표

AUROC

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
AUROC
Paper TitleRepository
RotNet + Translation77.9Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Translation + Self-Attention84.8Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet65.3Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
CSI91.6CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
RotNet + Translation + Self-Attention + Resize85.7Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
FCDD91Explainable Deep One-Class Classification
CLIP (Zero Shot)99.88Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
BCE-Clip (OE)99.90Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
RotNet + Self-Attention81.6Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Supervised (OE)56.1Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Binary Cross Entropy (OE)97.7Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 11 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili