HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
6차원 자세 추정 RGB 사용
6D Pose Estimation Using Rgb On Occlusion
6D Pose Estimation Using Rgb On Occlusion
평가 지표
Mean ADD
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Mean ADD
Paper Title
SO-Pose
62.3
SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation
RNNPose (Trained with synthetic data and LINEMOD training set, w/o pbr data)
60.65
RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization
GDR-Net
56.1
GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
DeepIM (Train on Occlusion LineMOD)
55.5
DeepIM: Deep Iterative Matching for 6D Pose Estimation
PPC (Refined from initial PVNet pose)
55.33
Pose Proposal Critic: Robust Pose Refinement by Learning Reprojection Errors
RePOSE
51.6
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
HybridPose
47.5
HybridPose: 6D Object Pose Estimation under Hybrid Representations
E2E6DoF
47.4
End-to-End Differentiable 6DoF Object Pose Estimation with Local and Global Constraints
DPOD
47.25
DPOD: 6D Pose Object Detector and Refiner
ROPE
45.95
Occlusion-Robust Object Pose Estimation with Holistic Representation
PVNet
40.77
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
SegDriven
27
Segmentation-driven 6D Object Pose Estimation
CullNet
24.48
CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose Estimation
0 of 13 row(s) selected.
Previous
Next