HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
3D Semantic Segmentation
3D Semantic Segmentation On Scannet200
3D Semantic Segmentation On Scannet200
평가 지표
test mIoU
val mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
test mIoU
val mIoU
Paper Title
Repository
DITR
44.9
41.2
-
-
PPT+SparseUNet
33.2
31.9
Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training
Pamba
37.1
36.3
Pamba: Enhancing Global Interaction in Point Clouds via State Space Model
-
OctFormer
32.5
32.6
OctFormer: Octree-based Transformers for 3D Point Clouds
PonderV2 + SparseUNet
34.6
32.3
PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm
OneFormer3D
-
30.1
OneFormer3D: One Transformer for Unified Point Cloud Segmentation
OA-CNNs
32.3
33.3
OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
LSK3DNet
-
33.1
LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels
CSC
24.9
26.4
Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts
MinkUNet
25.3
25.0
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
ODIN
36.8
40.5
ODIN: A Single Model for 2D and 3D Segmentation
Sonata + PTv3
-
36.8
-
-
BFANet
36.0
37.3
-
-
PTv3 + PPT
39.3
36.0
Point Transformer V3: Simpler, Faster, Stronger
LGround
27.2
28.8
Language-Grounded Indoor 3D Semantic Segmentation in the Wild
PTv3 ArKitLabelmaker
41.4
40.3
ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding
0 of 16 row(s) selected.
Previous
Next