HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 3D 포인트 클라우드 분류
  4. 3D Point Cloud Classification On Intra

3D Point Cloud Classification On Intra

평가 지표

F1 score (5-fold)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
F1 score (5-fold)
Paper TitleRepository
PointConv0.883PointConv: Deep Convolutional Networks on 3D Point Clouds
AdaptConv0.858Adaptive Graph Convolution for Point Cloud Analysis
SO-Net0.868SO-Net: Self-Organizing Network for Point Cloud Analysis
PointCNN0.875PointCNN: Convolution On X-Transformed Points-
SpiderCNN0.872SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
3DMedPT0.9363D Medical Point Transformer: Introducing Convolution to Attention Networks for Medical Point Cloud Analysis
PointNet++0.903PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
GS-Net0.872Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
DGCNN0.738Dynamic Graph CNN for Learning on Point Clouds
PCT0.914PCT: Point cloud transformer
PointNet0.684PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PAConv0.906PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
0 of 12 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili