HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
3D 객체 감지
3D Object Detection On Rope3D
3D Object Detection On Rope3D
평가 지표
[email protected]
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
[email protected]
Paper Title
Repository
CoBEV
52.72
CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity
-
M3D-RPN+(G)
16.75
M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
-
BEVFormer
24.64
BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision
-
BEVHeight
45.73
BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection
-
MonoUNI
75.27
MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues
Kinematic3D+(G)
17.74
Kinematic 3D Object Detection in Monocular Video
-
BEVDepth
42.56
BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection
-
MonoDLE+(G)
13.58
Delving into Localization Errors for Monocular 3D Object Detection
-
0 of 8 row(s) selected.
Previous
Next
3D Object Detection On Rope3D | SOTA | HyperAI초신경