3D Object Detection On Kitti Pedestrians Hard
평가 지표
AP
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | AP |
---|---|
std-sparse-to-dense-3d-object-detector-for | 41.97% |
ipod-intensive-point-based-object-detector | 42.39% |
voxelnet-end-to-end-learning-for-point-cloud | 31.51% |
frustum-convnet-sliding-frustums-to-aggregate | 41.49% |
frustum-pointpillars-a-multi-stage-approach | 39.28 % |
m3detr-multi-representation-multi-scale | 38.75% |
frustum-pointnets-for-3d-object-detection | 40.23% |
svga-net-sparse-voxel-graph-attention-network | 44.56% |
joint-3d-proposal-generation-and-object | 40.88% |