HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 3D 객체 감지
  4. 3D Object Detection On Kitti Pedestrians

3D Object Detection On Kitti Pedestrians

평가 지표

AP

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
AP
Paper TitleRepository
HotSpotNet44.81%Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots-
SVGA-Net47.71%SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds-
IPOD44.68%IPOD: Intensive Point-based Object Detector for Point Cloud-
Frustum PointNets42.15%Frustum PointNets for 3D Object Detection from RGB-D Data
3D-FCT58.4%3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation-
STD44.24%STD: Sparse-to-Dense 3D Object Detector for Point Cloud-
M3DeTR41.02%M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
AVOD + Feature Pyramid42.81%Joint 3D Proposal Generation and Object Detection from View Aggregation
VoxelNet33.69%VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
F-ConvNet43.38%Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
Frustrum-PointPillars42.89 %Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR-
PointPillars41.92%PointPillars: Fast Encoders for Object Detection from Point Clouds
0 of 12 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili