3D Object Detection On Kitti Cyclists Hard
평가 지표
AP
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | AP |
---|---|
svga-net-sparse-voxel-graph-attention-network | 57.64% |
voxelnet-end-to-end-learning-for-point-cloud | 44.37% |
std-sparse-to-dense-3d-object-detector-for | 55.77% |
pv-rcnn-point-voxel-feature-set-abstraction | 57.65% |
pointrcnn-3d-object-proposal-generation-and | 53.59% |
self-attention-based-context-aware-3d-object | 61.33% |
joint-3d-proposal-generation-and-object | 46.61% |
ipod-intensive-point-based-object-detector | 48.34% |
frustum-pointnets-for-3d-object-detection | 50.39% |
pointpillars-fast-encoders-for-object | 52.92% |
frustum-convnet-sliding-frustums-to-aggregate | 57.03% |
m3detr-multi-representation-multi-scale | 59.03% |