HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 3D 객체 감지
  4. 3D Object Detection On Kitti Cyclists Hard

3D Object Detection On Kitti Cyclists Hard

평가 지표

AP

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
AP
Paper TitleRepository
SVGA-Net57.64%SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds-
VoxelNet44.37%VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
STD55.77%STD: Sparse-to-Dense 3D Object Detector for Point Cloud-
PV-RCNN57.65%PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
PointRCNN53.59%PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
SA-Det3D61.33%SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection
AVOD + Feature Pyramid46.61%Joint 3D Proposal Generation and Object Detection from View Aggregation
IPOD48.34%IPOD: Intensive Point-based Object Detector for Point Cloud-
Frustum PointNets50.39%Frustum PointNets for 3D Object Detection from RGB-D Data
PointPillars52.92%PointPillars: Fast Encoders for Object Detection from Point Clouds
F-ConvNets57.03%Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
M3DeTR59.03%M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
0 of 12 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili