HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 3D 객체 감지
  4. 3D Object Detection On Kitti Cyclists Easy

3D Object Detection On Kitti Cyclists Easy

평가 지표

AP

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
AP
Paper TitleRepository
Frustum PointNets71.96%Frustum PointNets for 3D Object Detection from RGB-D Data
PointRCNN73.93%PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
VoxelNet61.22%VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
AVOD + Feature Pyramid64.0%Joint 3D Proposal Generation and Object Detection from View Aggregation
M3DeTR83.83%M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
STD78.89%STD: Sparse-to-Dense 3D Object Detector for Point Cloud-
F-ConvNet79.58%Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
3D-FCT89.15%3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation-
IPOD71.40%IPOD: Intensive Point-based Object Detector for Point Cloud-
SVGA-Net79.22%SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds-
PointPillars75.78%PointPillars: Fast Encoders for Object Detection from Point Clouds
PV-RCNN78.60%PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
0 of 12 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili