HyperAI초신경

3D Object Detection On Kitti Cars Hard

평가 지표

AP

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름AP
accurate-3d-object-detection-using-energy72.78%
joint-3d-instance-segmentation-and-object74.30%
frustum-convnet-sliding-frustums-to-aggregate68.08%
3d-dual-fusion-dual-domain-dual-query-camera-179.39%
pc-rgnn-point-cloud-completion-and-graph75.54%
svga-net-sparse-voxel-graph-attention-network74.63%
voxelnet-end-to-end-learning-for-point-cloud57.73%
모델 880.38 %
pv-rcnn-point-voxel-feature-set-abstraction-177.15%
multi-task-multi-sensor-fusion-for-3d-object-168.41%
a-general-pipeline-for-3d-detection-of64.83%
glenet-boosting-3d-object-detectors-with78.43%
m3detr-multi-representation-multi-scale76.96%
voxel-r-cnn-towards-high-performance-voxel77.06
probabilistic-and-geometric-depth-detecting9.39%
joint-3d-proposal-generation-and-object66.38%
ipod-intensive-point-based-object-detector66.33%
frustum-pointnets-for-3d-object-detection62.19%
pv-rcnn-point-voxel-feature-set-abstraction76.82%
std-sparse-to-dense-3d-object-detector-for76.06%
roarnet-a-robust-3d-object-detection-based-on59.16%
pointrgcn-graph-convolution-networks-for-3d70.60%
pointrcnn-3d-object-proposal-generation-and67.86%
se-ssd-self-ensembling-single-stage-object77.15%
cia-ssd-confident-iou-aware-single-stage72.87