HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 3D 객체 감지
  4. 3D Object Detection On Dair V2X I

3D Object Detection On Dair V2X I

평가 지표

AP|R40(easy)
AP|R40(hard)
AP|R40(moderate)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
AP|R40(easy)
AP|R40(hard)
AP|R40(moderate)
Paper TitleRepository
MonoUNI90.9287.287.2MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues
PointPillars63.154.054.0PointPillars: Fast Encoders for Object Detection from Point Clouds-
BEVHeight77.865.965.8BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection-
MVXNet71.053.853.7MVX-Net: Multimodal VoxelNet for 3D Object Detection-
CBR72.060.160.1Calibration-free BEV Representation for Infrastructure Perception-
CoBEV82.069.769.6CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity-
BEVFormer61.450.750.7BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers-
BEVDepth75.763.763.6BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection-
ImVoxelNet44.837.637.6ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection-
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili