HyperAI超神経

Zero Shot Transfer Image Classification On 1

評価指標

Accuracy (Private)

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
Accuracy (Private)
Paper TitleRepository
EVA-CLIP-E/14+82EVA-CLIP: Improved Training Techniques for CLIP at Scale
CWCL---
EVA-CLIP-18B83.8EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters-
CLIP(ViT-L/14-336px)76.2Learning Transferable Visual Models From Natural Language Supervision
LiT ViT-e85.4PaLI: A Jointly-Scaled Multilingual Language-Image Model
CLIP-Learning Transferable Visual Models From Natural Language Supervision
REACT78.5Learning Customized Visual Models with Retrieval-Augmented Knowledge
PaLI72.11PaLI: A Jointly-Scaled Multilingual Language-Image Model
InternVL-C83.2InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks
CLIP (ResNet50)59.6Learning Transferable Visual Models From Natural Language Supervision
CoCa86.3CoCa: Contrastive Captioners are Image-Text Foundation Models
BASIC (Lion)88.3--
M2-Encoder88.5M2-Encoder: Advancing Bilingual Image-Text Understanding by Large-scale Efficient Pretraining
IMP-MoE-L83.9Alternating Gradient Descent and Mixture-of-Experts for Integrated Multimodal Perception-
LiT-22B85.9Scaling Vision Transformers to 22 Billion Parameters
CLIPA (ViT-H/14-336px)81.8--
ALIGN76.4Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
MAWS (ViT-2B)82.1The effectiveness of MAE pre-pretraining for billion-scale pretraining
AltCLIP74.5AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities
Diffusion Classifier (zero-shot)61.4Your Diffusion Model is Secretly a Zero-Shot Classifier
0 of 23 row(s) selected.