Visual Reasoning On Nlvr2 Dev
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Accuracy |
---|---|
toward-building-general-foundation-models-for | 87.6 |
vlmo-unified-vision-language-pre-training | 85.64 |
visualbert-a-simple-and-performant-baseline | 66.7 |
differentiable-outlier-detection-enable | 83.9 |
coca-contrastive-captioners-are-image-text | 86.1 |
multi-grained-vision-language-pre-training | 84.41 |
x-2-vlm-all-in-one-pre-trained-model-for | 88.7 |
seeing-out-of-the-box-end-to-end-pre-training | 76.37 |
align-before-fuse-vision-and-language | 83.14 |
implicit-differentiable-outlier-detection | 84.6 |
vilt-vision-and-language-transformer-without | 75.7 |
simvlm-simple-visual-language-model | 84.53 |
image-as-a-foreign-language-beit-pretraining | 91.51 |
x-2-vlm-all-in-one-pre-trained-model-for | 86.2 |
lxmert-learning-cross-modality-encoder | 74.9 |