HyperAI超神経

Visual Question Answering On Gqa Test2019

評価指標

Accuracy
Binary
Consistency
Distribution
Open
Plausibility
Validity

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
Accuracy
Binary
Consistency
Distribution
Open
Plausibility
Validity
Paper TitleRepository
fisher60.9877.3290.775.3646.5584.9396.38--
LININ60.5978.4492.667.2844.8385.3896.57--
LSTM+CNN46.5563.2674.577.4631.884.2596.02--
VinVL-DPT64.9282.6394.375.1149.2984.9196.64--
rishabh_test59.3777.5388.636.0643.3584.7196.18--
BgTest59.876.7489.145.1144.8584.296.23--
Future_Test_team60.1777.1989.615.8345.1484.4696.36--
UNITER + MAC + Graph Networks59.2977.3188.945.843.3884.4396.3--
Fj37.0356.6163.9628.419.7485.1295.76--
rsa-14word57.3575.0787.615.9441.7184.595.86--
VinVL+L64.8582.5994.04.5949.1984.9196.62VinVL+L: Enriching Visual Representation with Location Context in VQA
KU55.072.0983.475.2939.9284.6696.34--
BottomUp49.7466.6478.715.9834.8384.5796.18Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
graphRepresentation, Single57.8974.5485.455.7343.1984.9996.4--
GRN61.2278.6990.316.7745.8185.4396.36Bilinear Graph Networks for Visual Question Answering-
total1456.9574.6287.715.8141.3684.5795.98--
TESTOVQA00760.1876.9789.655.2945.3684.4796.33--
NSM single (updated)63.1778.9493.253.7149.2584.2896.41--
LW55.6572.8689.189.6940.4685.2796.33--
GM6_9_2_train56.9674.9785.127.1341.0684.8596.38--
0 of 127 row(s) selected.