Visual Question Answering On Gqa Test2019
評価指標
Accuracy
Binary
Consistency
Distribution
Open
Plausibility
Validity
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | Accuracy | Binary | Consistency | Distribution | Open | Plausibility | Validity | Paper Title | Repository |
---|---|---|---|---|---|---|---|---|---|
fisher | 60.98 | 77.32 | 90.77 | 5.36 | 46.55 | 84.93 | 96.38 | - | - |
LININ | 60.59 | 78.44 | 92.66 | 7.28 | 44.83 | 85.38 | 96.57 | - | - |
LSTM+CNN | 46.55 | 63.26 | 74.57 | 7.46 | 31.8 | 84.25 | 96.02 | - | - |
VinVL-DPT | 64.92 | 82.63 | 94.37 | 5.11 | 49.29 | 84.91 | 96.64 | - | - |
rishabh_test | 59.37 | 77.53 | 88.63 | 6.06 | 43.35 | 84.71 | 96.18 | - | - |
BgTest | 59.8 | 76.74 | 89.14 | 5.11 | 44.85 | 84.2 | 96.23 | - | - |
Future_Test_team | 60.17 | 77.19 | 89.61 | 5.83 | 45.14 | 84.46 | 96.36 | - | - |
UNITER + MAC + Graph Networks | 59.29 | 77.31 | 88.94 | 5.8 | 43.38 | 84.43 | 96.3 | - | - |
Fj | 37.03 | 56.61 | 63.96 | 28.4 | 19.74 | 85.12 | 95.76 | - | - |
rsa-14word | 57.35 | 75.07 | 87.61 | 5.94 | 41.71 | 84.5 | 95.86 | - | - |
VinVL+L | 64.85 | 82.59 | 94.0 | 4.59 | 49.19 | 84.91 | 96.62 | VinVL+L: Enriching Visual Representation with Location Context in VQA | |
KU | 55.0 | 72.09 | 83.47 | 5.29 | 39.92 | 84.66 | 96.34 | - | - |
BottomUp | 49.74 | 66.64 | 78.71 | 5.98 | 34.83 | 84.57 | 96.18 | Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering | |
graphRepresentation, Single | 57.89 | 74.54 | 85.45 | 5.73 | 43.19 | 84.99 | 96.4 | - | - |
GRN | 61.22 | 78.69 | 90.31 | 6.77 | 45.81 | 85.43 | 96.36 | Bilinear Graph Networks for Visual Question Answering | - |
total14 | 56.95 | 74.62 | 87.71 | 5.81 | 41.36 | 84.57 | 95.98 | - | - |
TESTOVQA007 | 60.18 | 76.97 | 89.65 | 5.29 | 45.36 | 84.47 | 96.33 | - | - |
NSM single (updated) | 63.17 | 78.94 | 93.25 | 3.71 | 49.25 | 84.28 | 96.41 | - | - |
LW | 55.65 | 72.86 | 89.18 | 9.69 | 40.46 | 85.27 | 96.33 | - | - |
GM6_9_2_train | 56.96 | 74.97 | 85.12 | 7.13 | 41.06 | 84.85 | 96.38 | - | - |
0 of 127 row(s) selected.