HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Video Super Resolution
Video Super Resolution On Msu Video Upscalers
Video Super Resolution On Msu Video Upscalers
評価指標
LPIPS
PSNR
SSIM
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
LPIPS
PSNR
SSIM
Paper Title
Repository
SwinIR-Real-B
0.183
28.86
0.830
SwinIR: Image Restoration Using Swin Transformer
ESRGAN
-
27.29
0.936
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
LGFN
-
27.42
0.939
Local-Global Fusion Network for Video Super-Resolution
VEAI-GCG-5
0.292
31.01
0.859
-
-
ESPCN
-
26.25
0.926
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
VEAI-ALQ-13
0.206
31.00
0.890
-
-
VEAI-ASD-2
0.218
30.55
0.868
-
-
VEAI-GHQ-5
0.210
30.55
0.869
-
-
RealEsrgan-F
0.185
28.82
0.850
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Davinci SupScl
0.369
30.10
0.854
-
-
GP-Lines
0.212
29.01
0.822
-
-
DBVSR
-
27.28
0.937
Deep Blind Video Super-resolution
VEAI-AD-2
0.195
31.15
0.898
-
-
BasicVsr++RD
0.334
30.98
0.881
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
iSeeBetter
-
27.42
0.939
iSeeBetter: Spatio-Temporal Video Super Resolution using Recurrent-Generative Back-Projection Networks
VEAI-AAM-10
0.278
30.76
0.838
-
-
BSRGAN
0.177
29.27
0.836
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution
SRMD
0.349
30.96
0.852
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
SwinIR-Real-S
0.189
28.55
0.845
SwinIR: Image Restoration Using Swin Transformer
RealEsrgan
0.181
29.14
0.855
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
0 of 48 row(s) selected.
Previous
Next