HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ビデオ品質評価
Video Quality Assessment On Msu Sr Qa Dataset
Video Quality Assessment On Msu Sr Qa Dataset
評価指標
KLCC
PLCC
SROCC
Type
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
KLCC
PLCC
SROCC
Type
Paper Title
ClipIQA+
0.69774
0.71808
0.56875
NR
Exploring CLIP for Assessing the Look and Feel of Images
PieAPP
0.61945
0.75743
0.75215
FR
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
Q-Align (IQA)
0.61677
0.74116
0.75088
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
Q-Align (VQA)
0.58634
0.71121
0.71812
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
PaQ-2-PiQ
0.57753
0.70988
0.71167
NR
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
MUSIQ trained on PaQ-2-PiQ
0.55312
0.66531
0.67746
NR
MUSIQ: Multi-scale Image Quality Transformer
DBCNN
0.55139
0.63971
0.68621
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
MANIQA
0.54744
0.62733
0.66613
NR
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
TOPIQ trained on SPAQ (NR)
0.53140
0.60905
0.64923
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
MUSIQ trained on SPAQ
0.52673
0.60216
0.64927
NR
MUSIQ: Multi-scale Image Quality Transformer
ClipIQA+ ResNet50
0.52628
0.65154
0.65713
NR
Exploring CLIP for Assessing the Look and Feel of Images
Ma-Metric
0.52301
0.65357
0.67362
NR
Learning a No-Reference Quality Metric for Single-Image Super-Resolution
Linearity (Norm-in-Norm Loss)
0.52172
0.62204
0.64382
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
MUSIQ trained on KONIQ
0.51897
0.59151
0.64589
NR
MUSIQ: Multi-scale Image Quality Transformer
TOPIQ
0.50670
0.57674
0.62715
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
ClipIQA
0.49417
0.58944
0.60808
NR
Exploring CLIP for Assessing the Look and Feel of Images
TReS trained on KONIQ
0.49004
0.56226
0.62578
NR
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
TReS
0.48901
0.56277
0.62496
NR
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
HyperIQA
0.48466
0.55211
0.59883
NR
Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network
TOPIQ FACE
0.48428
0.58949
0.59564
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
0 of 60 row(s) selected.
Previous
Next
Video Quality Assessment On Msu Sr Qa Dataset | SOTA | HyperAI超神経