Video Prediction On Kth
評価指標
Cond
FVD
LPIPS
PSNR
Params (M)
Pred
SSIM
Train
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Cond | FVD | LPIPS | PSNR | Params (M) | Pred | SSIM | Train |
---|---|---|---|---|---|---|---|---|
stochastic-video-generation-with-a-learned | 10 | 157.9 | 0.129 | 23.91 | 22.8 | 40 | 0.800 | 10 |
stochastic-adversarial-video-prediction | 10 | - | - | 27.77 | - | 20 | 0.852 | - |
z-order-recurrent-neural-networks-for-video | 10 | - | - | 27.58 | - | 20 | 0.817 | - |
decomposing-motion-and-content-for-natural | 10 | - | - | 26.29 | - | 20 | 0.806 | - |
convolutional-tensor-train-lstm-for-spatio | 10 | - | 0.196 | 27.62 | - | 20 | 0.815 | - |
diverse-video-generation-using-a-gaussian-1 | - | - | - | - | - | - | - | - |
video-prediction-recalling-long-term-motion | 10 | - | 159.8 | 27.5 | - | 40 | 0.879 | - |
slamp-stochastic-latent-appearance-and-motion | 10 | 228 ± 5 | 0.0795±0.0034 | 29.39±0.30 | - | 30 | 0.8646±0.0050 | 10 |
stochastic-variational-video-prediction | 10 | 253.5 | 0.260 | 25.70 | 8.3 | 40 | 0.772 | 10 |
predrnn-a-recurrent-neural-network-for | 10 | - | 0.139 | 28.37 | - | 20 | 0.839 | - |
stochastic-latent-residual-video-prediction-1 | 10 | 222 ± 3 | 0.0736±0.0029 | 29.69±032 | - | 30 | 0.8697±0.0046 | 10 |
unsupervised-learning-of-object-structure-and | 10 | 395.0 | 0.124 | 24.29 | 2.3 | 40 | 0.766 | 10 |
convolutional-lstm-network-a-machine-learning | 10 | - | 0.231 | 23.58 | - | 20 | 0.712 | - |
msnet-mutual-suppression-network-for | 10 | - | - | 27.08 | - | 20 | 0.876 | - |
stochastic-variational-video-prediction | 10 | 209.5 | 0.232 | 25.87 | 8.3 | 40 | 0.782 | 10 |
stochastic-adversarial-video-prediction | 10 | 145.7 | 0.116 | 26.00 | 7.3 | 40 | 0.806 | 10 |
varnet-exploring-variations-for-unsupervised | 10 | - | - | 28.48 | - | 20 | 0.843 | - |
dynamic-filter-networks | 10 | - | - | 27.26 | - | 20 | 0.794 | - |
decomposing-motion-and-content-for-natural | 10 | - | - | 25.95 | - | 20 | 0.804 | - |
accurate-grid-keypoint-learning-for-efficient | 10 | 144.2 | 0.092 | 27.11 | 2.0 | 40 | 0.837 | 10 |
video-pixel-networks | 10 | - | - | 23.76 | - | 20 | 0.746 | - |
stochastic-adversarial-video-prediction | 10 | 183.7 | 0.126 | 23.79 | 17.6 | 40 | 0.699 | 10 |
deep-learning-for-precipitation-nowcasting-a | 10 | - | - | 26.97 | - | 20 | 0.790 | - |
folded-recurrent-neural-networks-for-future | 10 | - | - | 26.12 | - | 20 | 0.771 | - |
eidetic-3d-lstm-a-model-for-video-prediction | 10 | - | - | 29.31 | - | 20 | 0.879 | - |
stochastic-video-generation-with-a-learned | 10 | 377 ± 6 | 0.0923±0.0038 | 28.06±0.29 | - | 30 | 0.8438±0.0054 | 10 |
predrnn-towards-a-resolution-of-the-deep-in | 10 | - | - | 28.47 | - | 20 | 0.865 | - |
stochastic-adversarial-video-prediction | 10 | 374 ± 3 | 0.1120±0.0039 | 26.51±0.29 | - | 30 | 0.7564±0.0062 | 10 |
exploring-spatial-temporal-multi-frequency | 10 | - | - | 29.85 | - | 20 | 0.893 | - |
stochastic-variational-video-prediction | 10 | 636 ± 1 | 0.2049±0.0053 | 28.19±0.31 | - | 30 | 0.838 | 10 |
video-prediction-at-multiple-scales-with | - | - | 0.029 | 27.81 | - | - | 0.951 | - |