HyperAI超神経

Speech Recognition On Timit

評価指標

Percentage error

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
Percentage error
Paper TitleRepository
Li-GRU16.3The PyTorch-Kaldi Speech Recognition Toolkit
LSNN33.2Long short-term memory and learning-to-learn in networks of spiking neurons
wav2vec14.7wav2vec: Unsupervised Pre-training for Speech Recognition
wav2vec 2.08.3wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
LSTM + Dropout + BatchNorm + Monophone Reg14.5The PyTorch-Kaldi Speech Recognition Toolkit
LiGRU + Dropout + BatchNorm + Monophone Reg14.2The PyTorch-Kaldi Speech Recognition Toolkit
QCNN-10L-256FM19.64Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition
LSTM16.0The PyTorch-Kaldi Speech Recognition Toolkit
Bi-LSTM + skip connections w/ CTC17.7Speech Recognition with Deep Recurrent Neural Networks
GRU + Dropout + BatchNorm + Monophone Reg14.9The PyTorch-Kaldi Speech Recognition Toolkit
LAS multitask with indicators sampling20.4Attention model for articulatory features detection
Light Gated Recurrent Units16.7Light Gated Recurrent Units for Speech Recognition
Hierarchical maxout CNN + Dropout16.5--
RNN + Dropout + BatchNorm + Monophone Reg15.9The PyTorch-Kaldi Speech Recognition Toolkit
GRU16.6The PyTorch-Kaldi Speech Recognition Toolkit
RNN-CRF on 24(x3) MFSC17.3Segmental Recurrent Neural Networks for End-to-end Speech Recognition-
RNN16.5The PyTorch-Kaldi Speech Recognition Toolkit
Bi-RNN + Attention17.6Attention-Based Models for Speech Recognition
CNN in time and frequency + dropout, 17.6% w/o dropout16.7--
vq-wav2vec11.6vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations
0 of 22 row(s) selected.