HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Speech Recognition
Speech Recognition On Aishell 1
Speech Recognition On Aishell 1
評価指標
Params(M)
Word Error Rate (WER)
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Params(M)
Word Error Rate (WER)
Paper Title
Repository
U2
47
4.72
Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
Zipformer+CR-CTC (no external language model)
66.2
4.02
CR-CTC: Consistency regularization on CTC for improved speech recognition
Paraformer
46.3
4.95
FunASR: A Fundamental End-to-End Speech Recognition Toolkit
Qwen-Audio
-
1.29
Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models
Lightweight Transducer With LM
45.3
4.03
Lightweight Transducer Based on Frame-Level Criterion
Paraformer-large
220
1.95
FunASR: A Fundamental End-to-End Speech Recognition Toolkit
Att
-
18.7
End-to-end Speech Recognition with Adaptive Computation Steps
-
SE-WSBO With LM
46
4.1
Improving Mandarin Speech Recogntion with Block-augmented Transformer
CTC/Att
-
6.7
A Comparative Study on Transformer vs RNN in Speech Applications
CTC-CRF 4gram-LM
-
6.34
CAT: A CTC-CRF based ASR Toolkit Bridging the Hybrid and the End-to-end Approaches towards Data Efficiency and Low Latency
UMA
44.7
4.7
Unimodal Aggregation for CTC-based Speech Recognition
MMSpeech With LM
-
1.9
MMSpeech: Multi-modal Multi-task Encoder-Decoder Pre-training for Speech Recognition
CIF-HKD With LM
47
4.1
Knowledge Transfer from Pre-trained Language Models to Cif-based Speech Recognizers via Hierarchical Distillation
BRA-E
8.5
6.63
Beyond Universal Transformer: block reusing with adaptor in Transformer for automatic speech recognition
-
FireRedASR-AED
1,100
0.55
FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration
-
Seed-ASR
-
0.68
Seed-ASR: Understanding Diverse Speech and Contexts with LLM-based Speech Recognition
-
Lightweight Transducer
45.3
4.31
Lightweight Transducer Based on Frame-Level Criterion
BAT
90
4.97
BAT: Boundary aware transducer for memory-efficient and low-latency ASR
0 of 18 row(s) selected.
Previous
Next