HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
SMAC (スマック)
Smac On Smac 6H Vs 8Z 1
Smac On Smac 6H Vs 8Z 1
評価指標
Median Win Rate
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Median Win Rate
Paper Title
Repository
IQL
0
The StarCraft Multi-Agent Challenge
-
VDN
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
0
The StarCraft Multi-Agent Challenge
-
DDN
83.92
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
3
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
QMIX
12.78
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
ACE
93.75
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
VDN
0
The StarCraft Multi-Agent Challenge
-
QPLEX
-
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
QMIX
3
The StarCraft Multi-Agent Challenge
-
DMIX
49.43
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
43.75
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
IQL
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DIQL
0.00
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
0 of 14 row(s) selected.
Previous
Next
Smac On Smac 6H Vs 8Z 1 | SOTA | HyperAI超神経