HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
SMAC (スマック)
Smac On Smac 3S5Z Vs 3S6Z 1
Smac On Smac 3S5Z Vs 3S6Z 1
評価指標
Median Win Rate
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Median Win Rate
Paper Title
Repository
QMIX
2
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
Heuristic
0
The StarCraft Multi-Agent Challenge
-
DIQL
62.22
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
67.22
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DDN
94.03
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
IQL
29.83
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
89.2
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DMIX
91.08
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
ACE
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
QPLEX
84.38
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
VDN
2
The StarCraft Multi-Agent Challenge
-
IQL
0
The StarCraft Multi-Agent Challenge
-
0 of 13 row(s) selected.
Previous
Next
Smac On Smac 3S5Z Vs 3S6Z 1 | SOTA | HyperAI超神経