HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Smac
Smac On Smac 27M Vs 30M
Smac On Smac 27M Vs 30M
評価指標
Average Score
Median Win Rate
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Average Score
Median Win Rate
Paper Title
Repository
DMIX
19.43
85.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN
18.45
63.12
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL
14.45
6.02
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX
19.41
84.77
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic
-
0
The StarCraft Multi-Agent Challenge
DDN
19.71
91.48
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QPLEX
19.33
78.12
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
DPLEX
19.62
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
IQL
14.01
2.27
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX
-
49
The StarCraft Multi-Agent Challenge
QMIX
-
49
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
0 of 11 row(s) selected.
Previous
Next