HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
SMAC (スマック)
Smac On Smac 27M Vs 30M
Smac On Smac 27M Vs 30M
評価指標
Average Score
Median Win Rate
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Average Score
Median Win Rate
Paper Title
Repository
DMIX
19.43
85.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
18.45
63.12
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DIQL
14.45
6.02
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
19.41
84.77
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
DDN
19.71
91.48
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
19.33
78.12
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
DPLEX
19.62
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
IQL
14.01
2.27
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
-
49
The StarCraft Multi-Agent Challenge
-
QMIX
-
49
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
0 of 11 row(s) selected.
Previous
Next
Smac On Smac 27M Vs 30M | SOTA | HyperAI超神経