HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Smac 1
Smac On Smac Off Superhard Parallel
Smac On Smac Off Superhard Parallel
評価指標
Median Win Rate
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Median Win Rate
Paper Title
Repository
VDN
0.0
Value-Decomposition Networks For Cooperative Multi-Agent Learning
DRIMA
0.0
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
DDN
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
COMA
0.0
Counterfactual Multi-Agent Policy Gradients
DMIX
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
0.0
The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
MASAC
0.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
QMIX
0.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
QTRAN
0.0
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
0 of 10 row(s) selected.
Previous
Next