HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
シーケンシャル画像分類
Sequential Image Classification On Sequential
Sequential Image Classification On Sequential
評価指標
Permuted Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Permuted Accuracy
Paper Title
Repository
UnICORNN
98.4
UnICORNN: A recurrent model for learning very long time dependencies
-
CKCNN (1M)
98.54%
CKConv: Continuous Kernel Convolution For Sequential Data
-
Dilated GRU
94.6%
Dilated Recurrent Neural Networks
-
FlexTCN-6
-
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
-
LSSL
98.76%
Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers
-
LEM
96.6%
Long Expressive Memory for Sequence Modeling
-
STAR
-
Gating Revisited: Deep Multi-layer RNNs That Can Be Trained
-
GAM-RHN-1
96.8%
Recurrent Highway Networks with Grouped Auxiliary Memory
CKCNN (100k)
98%
CKConv: Continuous Kernel Convolution For Sequential Data
-
BN LSTM
95.4%
Recurrent Batch Normalization
-
Sparse Combo Net
96.94
RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent Neural Networks
-
Temporal Convolutional Network
97.2%
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
-
EGRU
95.1%
Efficient recurrent architectures through activity sparsity and sparse back-propagation through time
-
FlexTCN-4
98.72%
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
-
HiPPO-LegS
98.3%
HiPPO: Recurrent Memory with Optimal Polynomial Projections
-
Dense IndRNN
97.2%
Deep Independently Recurrent Neural Network (IndRNN)
-
coRNN
97.34%
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
-
Adaptive-saturated RNN
96.96%
Adaptive-saturated RNN: Remember more with less instability
LMU
97.2%
Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks
ODE-LSTM
97.83%
Learning Long-Term Dependencies in Irregularly-Sampled Time Series
-
0 of 30 row(s) selected.
Previous
Next