HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Semi Supervised Video Object Segmentation
Semi Supervised Video Object Segmentation On 15
Semi Supervised Video Object Segmentation On 15
評価指標
EAO
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
EAO
Paper Title
Repository
MCITrack-L384
0.624
Exploring Enhanced Contextual Information for Video-Level Object Tracking
SwinB-DeAOT-L
0.622
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
SwinB-AOT-L
0.586
Associating Objects with Transformers for Video Object Segmentation
R50-DeAOT-L
0.613
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
DeAOT-B
0.571
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
ODTrack-B
0.581
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
DeAOT-L
0.591
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
AOT-S
0.512
Associating Objects with Transformers for Video Object Segmentation
RPT
0.530
RPT: Learning Point Set Representation for Siamese Visual Tracking
-
DAM4SAM
0.729
A Distractor-Aware Memory for Visual Object Tracking with SAM2
ODTrack-L
0.605
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
AOT-B
0.541
Associating Objects with Transformers for Video Object Segmentation
DeAOT-T
0.472
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
DeAOT-S
0.593
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
AlphaRef
0.482
Alpha-Refine: Boosting Tracking Performance by Precise Bounding Box Estimation
-
AOT-L
0.574
Associating Objects with Transformers for Video Object Segmentation
MCITrack-B224
0.619
Exploring Enhanced Contextual Information for Video-Level Object Tracking
R50-AOT-L
0.569
Associating Objects with Transformers for Video Object Segmentation
AOT-T
0.435
Associating Objects with Transformers for Video Object Segmentation
MixFormer-L
0.555
MixFormer: End-to-End Tracking with Iterative Mixed Attention
0 of 20 row(s) selected.
Previous
Next