HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
半教師付きセマンティックセグメンテーション
Semi Supervised Semantic Segmentation On 15
Semi Supervised Semantic Segmentation On 15
評価指標
Validation mIoU
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Validation mIoU
Paper Title
S4MC
81.11
Semi-Supervised Semantic Segmentation via Marginal Contextual Information
PCR (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
80.91%
Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization
U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, CutMix)
80.5%
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
AEL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
80.29%
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
n-CPS (ResNet-101)
80.26%
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
PS-MT (DeepLab v3+ with ImageNet-pretrained ResNet-101, single scale inference)
79.76%
Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
GuidedMix-Net(DeepLab v2 with ResNet101, input-size: 512x512 with multi-scale and flip, ImageNet pretrained)
78.2%
GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as Reference
CPCL (DeepLab v3+ with ResNet-101)
77.67%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
PCT (DeepLab v3+ with ResNet-50 pretrained on ImageNet-1K)
77.26%
Learning Pseudo Labels for Semi-and-Weakly Supervised Semantic Segmentation
n-CPS (ResNet-50)
77.07%
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
GuidedMix-Net(DeepLab v2 with ResNet101, ImageNet pretrained)
76.5%
GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as Reference
CPCL (DeepLab v3+ with ResNet-50)
75.3%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
74.73%
Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks
Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
71.69%
Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks
0 of 14 row(s) selected.
Previous
Next