HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Semantic Correspondence
Semantic Correspondence On Pf Pascal
Semantic Correspondence On Pf Pascal
評価指標
PCK
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
PCK
Paper Title
Repository
HPF
88.3
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
-
CHM
91.6
Convolutional Hough Matching Networks
SD+DINO (Supervised)
93.6
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
VAT
92.3
Cost Aggregation Is All You Need for Few-Shot Segmentation
DHPF
90.7
Learning to Compose Hypercolumns for Visual Correspondence
CATs++
93.8
CATs++: Boosting Cost Aggregation with Convolutions and Transformers
SCOT
88.8
Semantic Correspondence as an Optimal Transport Problem
NC-Net
-
Neighbourhood Consensus Networks
GeoAware-SC (Supervised)
95.1
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
GeoAware-SC (Zero-Shot)
82.6
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
VAT (ECCV)
92.3
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
GeoAware-SC (Supervised, AP-10K P.T.)
95.7
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
CATs
92.6
CATs: Cost Aggregation Transformers for Visual Correspondence
ANCNet
88.7
Correspondence Networks with Adaptive Neighbourhood Consensus
0 of 14 row(s) selected.
Previous
Next