HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Rgb T Tracking
Rgb T Tracking On Lasher
Rgb T Tracking On Lasher
評価指標
Precision
Success
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Precision
Success
Paper Title
Repository
STMT
67.4
53.7
Transformer RGBT Tracking with Spatio-Temporal Multimodal Tokens
-
SeqTrackv2-L256
74.1
58.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
CAFormer
70.0
55.6
Cross-modulated Attention Transformer for RGBT Tracking
-
SDSTrack
66.5
53.1
SDSTrack: Self-Distillation Symmetric Adapter Learning for Multi-Modal Visual Object Tracking
MMMP
71.4
56.7
From Two-Stream to One-Stream: Efficient RGB-T Tracking via Mutual Prompt Learning and Knowledge Distillation
-
CAT
45.0
31.4
Challenge-Aware RGBT Tracking
-
OneTracker
67.2
53.8
OneTracker: Unifying Visual Object Tracking with Foundation Models and Efficient Tuning
-
SeqTrackv2-B256
70.4
55.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
ProTrack
50.9
42.1
Prompting for Multi-Modal Tracking
-
PromptTrack
76.2
60.7
-
-
SUTrack-L384
76.9
61.9
SUTrack: Towards Simple and Unified Single Object Tracking
SeqTrackv2-L384
76.7
61.0
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
MPLT
72.0
57.1
RGB-T Tracking via Multi-Modal Mutual Prompt Learning
TBSI
70.2
56.5
Bridging Search Region Interaction With Template for RGB-T Tracking
MANet++
46.7
31.4
RGBT Tracking via Multi-Adapter Network with Hierarchical Divergence Loss
-
GMMT
70.7
56.6
Generative-based Fusion Mechanism for Multi-Modal Tracking
SeqTrackv2-B384
71.5
56.2
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
BAT
70.2
56.3
Bi-directional Adapter for Multi-modal Tracking
Un-Track
66.7
53.6
Single-Model and Any-Modality for Video Object Tracking
MambaVT-M256
72.7
57.5
MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking
-
0 of 36 row(s) selected.
Previous
Next