HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
網膜血管セグメンテーション
Retinal Vessel Segmentation On Drive
Retinal Vessel Segmentation On Drive
評価指標
AUC
F1 score
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AUC
F1 score
Paper Title
Repository
IterNet
0.9816
0.8205
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks
-
ConvMixer
-
0.8245
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
BCDU-Net (d=3)
0.9789
0.8224
Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions
-
Study Group Learning
0.9886
0.8316
Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels
-
ConvMixer-Light
-
0.8215
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
ET-Net
-
-
ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation
-
MERIT-GCASCADE
-
0.8290
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
U-Net
0.9755
0.8142
U-Net: Convolutional Networks for Biomedical Image Segmentation
-
SA-UNet
0.9864
0.8263
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
-
RV-GAN
-
-
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network
-
VGN
0.9802
0.8263
Deep Vessel Segmentation By Learning Graphical Connectivity
-
U-Net
0.9855
-
Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation
-
PVT-GCASCADE
-
0.8210
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
-
FR-UNet
0.9889
0.8316
Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
DUNet
0.9802
0.8237
DUNet: A deformable network for retinal vessel segmentation
-
FSG-Net
0.9823
0.8322
Full-scale Representation Guided Network for Retinal Vessel Segmentation
-
LadderNet
0.9793
0.8202
LadderNet: Multi-path networks based on U-Net for medical image segmentation
-
CE-Net
0.9779
-
CE-Net: Context Encoder Network for 2D Medical Image Segmentation
-
Swin-Res-Net
0.9931
-
Enhancing Retinal Vascular Structure Segmentation in Images With a Novel Design Two-Path Interactive Fusion Module Model
-
Residual U-Net
0.9779
0.8149
Road Extraction by Deep Residual U-Net
-
0 of 21 row(s) selected.
Previous
Next
Retinal Vessel Segmentation On Drive | SOTA | HyperAI超神経