HyperAI
HyperAI超神経
ホーム
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
サイトを検索…
⌘
K
ホーム
SOTA
網膜血管セグメンテーション
Retinal Vessel Segmentation On Drive
Retinal Vessel Segmentation On Drive
評価指標
AUC
F1 score
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AUC
F1 score
Paper Title
Repository
IterNet
0.9816
0.8205
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks
ConvMixer
-
0.8245
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
-
BCDU-Net (d=3)
0.9789
0.8224
Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions
Study Group Learning
0.9886
0.8316
Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels
ConvMixer-Light
-
0.8215
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
-
ET-Net
-
-
ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation
MERIT-GCASCADE
-
0.8290
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
U-Net
0.9755
0.8142
U-Net: Convolutional Networks for Biomedical Image Segmentation
SA-UNet
0.9864
0.8263
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
RV-GAN
-
-
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network
VGN
0.9802
0.8263
Deep Vessel Segmentation By Learning Graphical Connectivity
U-Net
0.9855
-
Exploring The Limits Of Data Augmentation For Retinal Vessel Segmentation
PVT-GCASCADE
-
0.8210
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
FR-UNet
0.9889
0.8316
Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
-
DUNet
0.9802
0.8237
DUNet: A deformable network for retinal vessel segmentation
-
FSG-Net
0.9823
0.8322
Full-scale Representation Guided Network for Retinal Vessel Segmentation
LadderNet
0.9793
0.8202
LadderNet: Multi-path networks based on U-Net for medical image segmentation
CE-Net
0.9779
-
CE-Net: Context Encoder Network for 2D Medical Image Segmentation
Swin-Res-Net
0.9931
-
Enhancing Retinal Vascular Structure Segmentation in Images With a Novel Design Two-Path Interactive Fusion Module Model
Residual U-Net
0.9779
0.8149
Road Extraction by Deep Residual U-Net
0 of 21 row(s) selected.
Previous
Next