Question Answering On Wikiqa
評価指標
MAP
MRR
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | MAP | MRR |
---|---|---|
distributed-representations-of-sentences-and | 0.5110 | 0.5160 |
pre-training-transformer-models-with-sentence | 0.901 | 0.914 |
hyperbolic-representation-learning-for-fast | 0.712 | 0.727 |
pairwise-word-interaction-modeling-with-deep | 0.7090 | 0.7234 |
distributed-representations-of-sentences-and | 0.5976 | 0.6058 |
baseline-needs-more-love-on-simple-word | 0.6788 | 0.6908 |
neural-variational-inference-for-text | 0.682 | 0.6988 |
deep-learning-for-answer-sentence-selection | 0.6520 | 0.6652 |
tanda-transfer-and-adapt-pre-trained | 0.920 | 0.933 |
simple-and-effective-text-matching-with-1 | 0.7452 | 0.7618 |
noise-contrastive-estimation-and-negative | 0.7010 | 0.7180 |
pre-training-transformer-models-with-sentence | 0.887 | 0.899 |
neural-variational-inference-for-text | 0.6552 | 0.6747 |
attentive-pooling-networks | 0.6886 | 0.6957 |
wikiqa-a-challenge-dataset-for-open-domain | 0.6520 | 0.6652 |
deep-learning-for-answer-sentence-selection | 0.6190 | 0.6281 |
rlas-biabc-a-reinforcement-learning-based | 0.924 | 0.908 |
neural-semantic-encoders | 0.6811 | 0.6993 |
sentence-similarity-learning-by-lexical | 0.7058 | 0.7226 |
a-compare-aggregate-model-with-latent | 0.764 | 0.784 |
neural-variational-inference-for-text | 0.6886 | 0.7069 |
key-value-memory-networks-for-directly | 0.7069 | 0.7265 |
paragraph-based-transformer-pre-training-for | 0.887 | 0.900 |
pre-training-transformer-models-with-sentence | 0.909 | 0.920 |
structural-self-supervised-objectives-for | 0.927 | 0.939 |