HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
ホーム
SOTA
質問応答
Question Answering On Squad20 Dev
Question Answering On Squad20 Dev
評価指標
EM
F1
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
EM
F1
Paper Title
Repository
XLNet (single model)
87.9
90.6
XLNet: Generalized Autoregressive Pretraining for Language Understanding
XLNet+DSC
87.65
89.51
Dice Loss for Data-imbalanced NLP Tasks
RoBERTa (no data aug)
86.5
89.4
RoBERTa: A Robustly Optimized BERT Pretraining Approach
ALBERT xxlarge
85.1
88.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
SG-Net
85.1
87.9
SG-Net: Syntax-Guided Machine Reading Comprehension
SpanBERT
-
86.8
SpanBERT: Improving Pre-training by Representing and Predicting Spans
ALBERT xlarge
83.1
85.9
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
SemBERT large
80.9
83.6
Semantics-aware BERT for Language Understanding
ALBERT large
79.0
82.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
ALBERT base
76.1
79.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
RMR + ELMo (Model-III)
72.3
74.8
Read + Verify: Machine Reading Comprehension with Unanswerable Questions
-
U-Net
70.3
74.0
U-Net: Machine Reading Comprehension with Unanswerable Questions
TinyBERT-6 67M
69.9
73.4
TinyBERT: Distilling BERT for Natural Language Understanding
0 of 13 row(s) selected.
Previous
Next