HyperAI超神経

Question Answering On Squad11 Dev

評価指標

EM
F1

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名EMF1
learning-recurrent-span-representations-for66.474.9
words-or-characters-fine-grained-gating-for59.9571.25
reinforced-mnemonic-reader-for-machine78.9 86.3
machine-comprehension-using-match-lstm-and64.1 64.7
learned-in-translation-contextualized-word71.379.9
multi-perspective-context-matching-for66.175.8
exploring-machine-reading-comprehension-with76.784.9
prune-once-for-all-sparse-pre-trained75.6283.87
bart-denoising-sequence-to-sequence-pre-90.8
learning-dense-representations-of-phrases-at78.386.3
prune-once-for-all-sparse-pre-trained83.2290.02
a-fully-attention-based-information-retriever65.175.6
prune-once-for-all-sparse-pre-trained81.188.42
exploring-the-limits-of-transfer-learning88.5394.95
fusionnet-fusing-via-fully-aware-attention75.383.6
19091035179.787.5
ruminating-reader-reasoning-with-gated-multi70.679.5
deep-contextualized-word-representations-85.6
stochastic-answer-networks-for-machine76.23584.056
dynamic-coattention-networks-for-question65.475.6
dcn-mixed-objective-and-deep-residual74.583.1
smarnet-teaching-machines-to-read-and71.36280.183
prune-once-for-all-sparse-pre-trained78.185.82
bert-pre-training-of-deep-bidirectional86.292.2
qanet-combining-local-convolution-with-global73.682.7
exploring-the-limits-of-transfer-learning79.187.24
luke-deep-contextualized-entity89.8-
exploring-the-limits-of-transfer-learning85.4492.08
end-to-end-answer-chunk-extraction-and 62.571.2
gated-self-matching-networks-for-reading71.179.5
exploring-the-limits-of-transfer-learning90.0695.64
distilbert-a-distilled-version-of-bert-85.8
structural-embedding-of-syntactic-trees-for 67.89 77.42
structural-embedding-of-syntactic-trees-for67.6577.19
xlnet-generalized-autoregressive-pretraining89.795.1
simple-recurrent-units-for-highly71.480.2
prune-once-for-all-sparse-pre-trained80.8488.24
bert-pre-training-of-deep-bidirectional84.291.1
bidirectional-attention-flow-for-machine 67.777.3
dice-loss-for-data-imbalanced-nlp-tasks89.7995.77
prune-once-for-all-sparse-pre-trained83.3590.2
making-neural-qa-as-simple-as-possible-but70.378.5
luke-deep-contextualized-entity-95
distilbert-a-distilled-version-of-bert77.7-
exploring-the-limits-of-transfer-learning86.6693.79
reducing-bert-pre-training-time-from-3-days-90.584
prune-once-for-all-sparse-pre-trained77.0385.13
learning-to-compute-word-embeddings-on-the63.06-
prune-once-for-all-sparse-pre-trained76.9184.82
exploring-question-understanding-and69.1078.38
reading-wikipedia-to-answer-open-domain69.578.8
qanet-combining-local-convolution-with-global74.583.2
qanet-combining-local-convolution-with-global75.183.8
phase-conductor-on-multi-layered-attentions72.181.4
prune-once-for-all-sparse-pre-trained79.8387.25