HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
質問応答
Question Answering On Drop Test
Question Answering On Drop Test
評価指標
F1
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
F1
Paper Title
Repository
QDGAT (ensemble)
88.38
Question Directed Graph Attention Network for Numerical Reasoning over Text
-
PaLM 2 (few-shot)
85.0
PaLM 2 Technical Report
GPT-3 175B (few-shot, k=32)
36.5
Language Models are Few-Shot Learners
GPT-4 (few-shot, k=3)
80.9
GPT-4 Technical Report
NeRd
81.71
Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension
-
NumNet
67.97
NumNet: Machine Reading Comprehension with Numerical Reasoning
Orca 2-7B
60.26
Orca 2: Teaching Small Language Models How to Reason
-
GPT 3.5 (few-shot, k=3)
64.1
GPT-4 Technical Report
Orca 2-13B
57.97
Orca 2: Teaching Small Language Models How to Reason
-
POET
87.6
Reasoning Like Program Executors
BERT
32.7
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
BERT+Calculator (ensemble)
81.78
Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension
-
NAQA Net
47.01
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
GenBERT (+ND+TD)
72.4
Injecting Numerical Reasoning Skills into Language Models
MTMSN Large
79.88
A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
TASE-BERT
80.7
A Simple and Effective Model for Answering Multi-span Questions
0 of 16 row(s) selected.
Previous
Next
Question Answering On Drop Test | SOTA | HyperAI超神経