HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Object Recognition
Object Recognition On Shape Bias
Object Recognition On Shape Bias
評価指標
shape bias
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
shape bias
Paper Title
Repository
ViT-22B-384
86.4
Scaling Vision Transformers to 22 Billion Parameters
ResNet-50
22.1
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
ViT-22B-560
83.8
Scaling Vision Transformers to 22 Billion Parameters
GoogLeNet
31.2
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
ViT-22B-224
78.0
Scaling Vision Transformers to 22 Billion Parameters
CLIP (ViT-B)
79.9
Learning Transferable Visual Models From Natural Language Supervision
SWSL (ResNet-50)
28.6
Billion-scale semi-supervised learning for image classification
SimCLR (ResNet-50x4)
40.7
A Simple Framework for Contrastive Learning of Visual Representations
Parti
91.7
Intriguing properties of generative classifiers
VGG-16
17.2
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Stable Diffusion
92.7
Intriguing properties of generative classifiers
SimCLR (ResNet-50x1)
38.9
A Simple Framework for Contrastive Learning of Visual Representations
SWSL (ResNeXt-101)
49.8
Billion-scale semi-supervised learning for image classification
ResNet-50 (with strong augmentations)
62.2
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
-
ResNet-50 (L2 eps 5.0 adv trained)
69.5
Do Adversarially Robust ImageNet Models Transfer Better?
SimCLR (ResNet-50x2)
41.7
A Simple Framework for Contrastive Learning of Visual Representations
Imagen
98.7
Intriguing properties of generative classifiers
AlexNet
42.9
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
0 of 18 row(s) selected.
Previous
Next