HyperAI超神経

Node Classification On Non Homophilic 6

評価指標

1:1 Accuracy

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
1:1 Accuracy
Paper TitleRepository
SGC-159.73±0.12Simplifying Graph Convolutional Networks
ACM-GCN+67.4±0.44Revisiting Heterophily For Graph Neural Networks
GAT61.09±0.77Graph Attention Networks
ACMII-GCN67.15±0.41Revisiting Heterophily For Graph Neural Networks
GCNII66.38±0.45Simple and Deep Graph Convolutional Networks
ACM-GCN67.01±0.38Revisiting Heterophily For Graph Neural Networks
C&S(2hop)64.52±0.62Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
H2GCN67.22±0.90Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GCN+JK60.99±0.14New Benchmarks for Learning on Non-Homophilous Graphs
GCN62.23±0.53Semi-Supervised Classification with Graph Convolutional Networks
LINK57.71±0.36New Benchmarks for Learning on Non-Homophilous Graphs
ACM-GCN++67.3±0.48Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+67.44±0.31Revisiting Heterophily For Graph Neural Networks
MixHop66.80±0.58MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
FAGCN66.86±0.53Beyond Low-frequency Information in Graph Convolutional Networks
ACM-SGC-266.53±0.57Revisiting Heterophily For Graph Neural Networks
LProp (2hop)56.96±0.26New Benchmarks for Learning on Non-Homophilous Graphs
GAT+JK59.66±0.92New Benchmarks for Learning on Non-Homophilous Graphs
APPNP67.21±0.56Predict then Propagate: Graph Neural Networks meet Personalized PageRank
ACM-GCNII66.39±0.56Revisiting Heterophily For Graph Neural Networks
0 of 28 row(s) selected.