HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 6
Node Classification On Non Homophilic 6
評価指標
1:1 Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
1:1 Accuracy
Paper Title
Repository
SGC-1
59.73±0.12
Simplifying Graph Convolutional Networks
ACM-GCN+
67.4±0.44
Revisiting Heterophily For Graph Neural Networks
GAT
61.09±0.77
Graph Attention Networks
ACMII-GCN
67.15±0.41
Revisiting Heterophily For Graph Neural Networks
GCNII
66.38±0.45
Simple and Deep Graph Convolutional Networks
ACM-GCN
67.01±0.38
Revisiting Heterophily For Graph Neural Networks
C&S(2hop)
64.52±0.62
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
H2GCN
67.22±0.90
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GCN+JK
60.99±0.14
New Benchmarks for Learning on Non-Homophilous Graphs
GCN
62.23±0.53
Semi-Supervised Classification with Graph Convolutional Networks
LINK
57.71±0.36
New Benchmarks for Learning on Non-Homophilous Graphs
ACM-GCN++
67.3±0.48
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
67.44±0.31
Revisiting Heterophily For Graph Neural Networks
MixHop
66.80±0.58
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
FAGCN
66.86±0.53
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-SGC-2
66.53±0.57
Revisiting Heterophily For Graph Neural Networks
LProp (2hop)
56.96±0.26
New Benchmarks for Learning on Non-Homophilous Graphs
GAT+JK
59.66±0.92
New Benchmarks for Learning on Non-Homophilous Graphs
APPNP
67.21±0.56
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
ACM-GCNII
66.39±0.56
Revisiting Heterophily For Graph Neural Networks
0 of 28 row(s) selected.
Previous
Next