HyperAI超神経

Node Classification On Non Homophilic 15

評価指標

1:1 Accuracy

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名1:1 Accuracy
large-scale-learning-on-non-homophilous60.92 ± 0.07
mixhop-higher-order-graph-convolution65.64 ± 0.27
simplifying-graph-convolutional-networks59.94 ± 0.21
revisiting-heterophily-for-graph-neural66.24 ± 0.24
addressing-heterophily-in-node-classification68.34 ± 0.86
revisiting-heterophily-for-graph-neural65.92 ± 0.14
finding-global-homophily-in-graph-neural66.34 ± 0.29
simplifying-graph-convolutional-networks58.97 ± 0.19
revisiting-heterophily-for-graph-neural65.943 ± 0.284
semi-supervised-classification-with-graph62.18 ± 0.26
joint-adaptive-feature-smoothing-and-topology61.89 ± 0.29
large-scale-learning-on-non-homophilous62.77 ± 0.24
predict-then-propagate-graph-neural-networks60.97 ± 0.10
large-scale-learning-on-non-homophilous63.45 ± 0.22
combining-label-propagation-and-simple-models-164.86 ± 0.27
combining-label-propagation-and-simple-models-165.02 ± 0.16
finding-global-homophily-in-graph-neural66.19 ± 0.29
revisiting-heterophily-for-graph-neural63.92 ± 0.19
large-scale-learning-on-non-homophilous66.06 ± 0.19
clenshaw-graph-neural-networks66.56 ± 0.28
large-scale-learning-on-non-homophilous59.98 ± 2.87
simple-and-deep-graph-convolutional-networks-163.39 ± 0.61
revisiting-heterophily-for-graph-neural63.73 ± 0.13
revisiting-heterophily-for-graph-neural65.838 ± 0.153
large-scale-learning-on-non-homophilous63.88 ± 0.24
large-scale-learning-on-non-homophilous64.85 ± 0.21