HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Multi Hypotheses 3D Human Pose Estimation
Multi Hypotheses 3D Human Pose Estimation On
Multi Hypotheses 3D Human Pose Estimation On
評価指標
Average MPJPE (mm)
Average PMPJPE (mm)
Using 2D ground-truth joints
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Average MPJPE (mm)
Average PMPJPE (mm)
Using 2D ground-truth joints
Paper Title
Repository
GFPose (HPJ2D-000, S=200)
35.6
30.5
16.9
GFPose: Learning 3D Human Pose Prior with Gradient Fields
Li et al.
73.9
44.3
-
Weakly Supervised Generative Network for Multiple 3D Human Pose Hypotheses
cGNF xlarge w Lsample
48.5
-
-
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
MDN
52.7
42.6
-
Generating Multiple Hypotheses for 3D Human Pose Estimation with Mixture Density Network
D3DP
35.4
-
No
Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis Aggregation
Sharma et al.
46.8
37.3
-
Monocular 3D Human Pose Estimation by Generation and Ordinal Ranking
GraphMDN
46.2
36.3
-
GraphMDN: Leveraging graph structure and deep learning to solve inverse problems
-
MHEntropy
-
36.8
-
MHEntropy: Entropy Meets Multiple Hypotheses for Pose and Shape Recovery
-
GFPose (HPJ2D-010, S=200)
35.1
-
-
GFPose: Learning 3D Human Pose Prior with Gradient Fields
cGNF w Lsample
53
-
-
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
0 of 10 row(s) selected.
Previous
Next