HyperAI超神経

Molecular Property Prediction On Freesolv

評価指標

R2
RMSE

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名R2RMSE
how-powerful-are-graph-neural-networks0.964±0.0080.744±0.083
grover-self-supervised-message-passing-2.272
pre-training-graph-neural-networks-on-1.648±0.074
n-gram-graph-a-novel-molecule-representation-2.688
uni-mol-a-universal-3d-molecular-1.620
n-gram-graph-a-novel-molecule-representation-5.061
chemrl-gem-geometry-enhanced-molecular-1.877
dropgnn-random-dropouts-increase-the0.972±0.0050.657±0.059
self-guided-masked-autoencoders-for-domain-1.09
principal-neighbourhood-aggregation-for-graph0.951±0.0090.870±0.081
a-bayesian-flow-network-framework-for-1.418
pure-transformers-are-powerful-graph-learners0.930±0.0181.038±0.125
masked-attention-is-all-you-need-for-graphs0.977±0.0010.595±0.013
pre-training-graph-neural-networks-2.764
graph-attention-networks0.959±0.0110.791±0.101
do-transformers-really-perform-bad-for-graph0.927±0.0051.065±0.039
are-learned-molecular-representations-ready-2.082
recipe-for-a-general-powerful-scalable-graph0.861±0.0371.462±0.188
semi-supervised-classification-with-graph0.957±0.0090.815±0.086
how-attentive-are-graph-attention-networks0.970±0.0070.676±0.081
grover-self-supervised-message-passing-2.176
molecular-structure-property-co-trained-1.859