Metric Learning On Stanford Online Products 1
評価指標
R@1
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | R@1 |
---|---|
stir-siamese-transformer-for-image-retrieval | 86.5 |
improved-embeddings-with-easy-positive | 78.3 |
hyperbolic-vision-transformers-combining | 85.1 |
non-isotropy-regularization-for-proxy-based | 80.7 |
metric-learning-cross-entropy-vs-pairwise | 81.1 |
hierarchical-average-precision-training-for | 81.8 |
cross-modal-retrieval-with-querybank | 78.1 |
the-group-loss-for-deep-metric-learning | 75.7 |
robust-and-decomposable-average-precision-for | 83.1 |
towards-interpretable-deep-metric-learning | 79.26 |
s2sd-simultaneous-similarity-based-self | 81.0 |
recall-k-surrogate-loss-with-large-batches | 88.0 |
unicom-universal-and-compact-representation | 91.2 |
recall-k-surrogate-loss-with-large-batches | 82.7 |
proxy-anchor-loss-for-deep-metric-learning | 80.3 |
pads-policy-adapted-sampling-for-visual | 76.5 |
recall-k-surrogate-loss-with-large-batches | 85.1 |
stir-siamese-transformer-for-image-retrieval | 88.3 |
mic-mining-interclass-characteristics-for | 77.2 |
integrating-language-guidance-into-vision | 81.3 |
das-densely-anchored-sampling-for-deep-metric | 80.59 |
attributable-visual-similarity-learning | 79.6 |
hierarchical-average-precision-training-for | 81.0 |
hyperbolic-vision-transformers-combining | 85.9 |
robust-and-decomposable-average-precision-for | 86.0 |
circle-loss-a-unified-perspective-of-pair | 78.3 |
calibrated-neighborhood-aware-confidence | 81.2 |
hard-negative-examples-are-hard-but-useful | 81.6 |
center-contrastive-loss-for-metric-learning | 83.10 |
diva-diverse-visual-feature-aggregation | 79.6 |
proxynca-revisiting-and-revitalizing-proxy | 80.7 |
it-takes-two-to-tango-mixup-for-deep-metric | 81.3 |
dissecting-the-impact-of-different-loss | 82.3 |