HyperAI超神経

Metric Learning On Stanford Online Products 1

評価指標

R@1

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名R@1
stir-siamese-transformer-for-image-retrieval86.5
improved-embeddings-with-easy-positive78.3
hyperbolic-vision-transformers-combining85.1
non-isotropy-regularization-for-proxy-based80.7
metric-learning-cross-entropy-vs-pairwise81.1
hierarchical-average-precision-training-for81.8
cross-modal-retrieval-with-querybank78.1
the-group-loss-for-deep-metric-learning75.7
robust-and-decomposable-average-precision-for83.1
towards-interpretable-deep-metric-learning79.26
s2sd-simultaneous-similarity-based-self81.0
recall-k-surrogate-loss-with-large-batches88.0
unicom-universal-and-compact-representation91.2
recall-k-surrogate-loss-with-large-batches82.7
proxy-anchor-loss-for-deep-metric-learning80.3
pads-policy-adapted-sampling-for-visual76.5
recall-k-surrogate-loss-with-large-batches85.1
stir-siamese-transformer-for-image-retrieval88.3
mic-mining-interclass-characteristics-for77.2
integrating-language-guidance-into-vision81.3
das-densely-anchored-sampling-for-deep-metric80.59
attributable-visual-similarity-learning79.6
hierarchical-average-precision-training-for81.0
hyperbolic-vision-transformers-combining85.9
robust-and-decomposable-average-precision-for86.0
circle-loss-a-unified-perspective-of-pair78.3
calibrated-neighborhood-aware-confidence81.2
hard-negative-examples-are-hard-but-useful81.6
center-contrastive-loss-for-metric-learning83.10
diva-diverse-visual-feature-aggregation79.6
proxynca-revisiting-and-revitalizing-proxy80.7
it-takes-two-to-tango-mixup-for-deep-metric81.3
dissecting-the-impact-of-different-loss82.3