Link Prediction On Citeseer
評価指標
AP
AUC
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | AP | AUC | Paper Title | Repository |
---|---|---|---|---|
Node Feature Agg + Similarity Metric | 91.8% | 90.9% | Rethinking Kernel Methods for Node Representation Learning on Graphs | |
MTGAE | - | - | Multi-Task Graph Autoencoders | |
VGNAE | 97.1 | 97 | Variational Graph Normalized Auto-Encoders | |
NBFNet | 93.6% | 92.3% | Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction | |
BANE | - | 95.59% | Binarized Attributed Network Embedding | |
Graph InfoClust (GIC) | 96.8 | 97 | Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning | |
S-VGAE | 95.2 | 94.7 | Hyperspherical Variational Auto-Encoders | |
ARGE | 93 | 91.9 | Adversarially Regularized Graph Autoencoder for Graph Embedding | |
sGraphite-VAE | 95.4% | 94.1% | Graphite: Iterative Generative Modeling of Graphs | |
Walkpooling | 96.04 | 95.94 | Neural Link Prediction with Walk Pooling | |
Variational graph auto-encoders | - | - | Variational Graph Auto-Encoders | |
NESS | 99.5 | 99.43 | NESS: Node Embeddings from Static SubGraphs | |
GNAE | 97 | 96.5 | Variational Graph Normalized Auto-Encoders |
0 of 13 row(s) selected.