HyperAI超神経

Language Modelling On Penn Treebank Character

評価指標

Bit per Character (BPC)
Number of params

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Bit per Character (BPC)Number of params
seq-u-net-a-one-dimensional-causal-u-net-for1.315.9M
improved-language-modeling-by-decoding-the1.16913.8M
hypernetworks1.21914.4M
accessing-higher-level-representations-in1.16010.7M
mogrifier-lstm1.08324M
recurrent-highway-networks-with-grouped1.14716.0M
mogrifier-lstm1.12024M
seq-u-net-a-one-dimensional-causal-u-net-for1.35.9M
trellis-networks-for-sequence-modeling1.15813.4M
r-transformer-recurrent-neural-network1.24-
an-analysis-of-neural-language-modeling-at1.18713.8M
independently-recurrent-neural-network-indrnn1.19-
deep-independently-recurrent-neural-network1.18-
an-empirical-evaluation-of-generic1.31-
neural-architecture-search-with-reinforcement1.21416.3M
fast-slow-recurrent-neural-networks1.19027M
discrete-flows-invertible-generative-models1.38-
gating-revisited-deep-multi-layer-rnns-that-11.30-
an-analysis-of-neural-language-modeling-at1.17513.8M
fast-slow-recurrent-neural-networks1.19327M