HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
インスタンスセグメンテーション
Instance Segmentation On Lvis V1 0 Val
Instance Segmentation On Lvis V1 0 Val
評価指標
mask AP
mask APr
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
mask AP
mask APr
Paper Title
Co-DETR (single-scale)
60.7
-
DETRs with Collaborative Hybrid Assignments Training
EVA
55.0
-
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
HTC-ealrystop-ema
50.4
-
LVIS Challenge Track Technical Report 1st Place Solution: Distribution Balanced and Boundary Refinement for Large Vocabulary Instance Segmentation
GLEE-Pro
49.9
-
General Object Foundation Model for Images and Videos at Scale
ViTDet-H
48.1
36.9
Exploring Plain Vision Transformer Backbones for Object Detection
ViTDet-L
46.0
34.3
Exploring Plain Vision Transformer Backbones for Object Detection
DiverGen (Swin-L)
45.5
45.8
DiverGen: Improving Instance Segmentation by Learning Wider Data Distribution with More Diverse Generative Data
CenterNet2 (Swin-L w/ X-Paste + Copy-Paste)
45.4
43.8
X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and StableDiffusion
DiffusionInst-SwinL
38.6
-
DiffusionInst: Diffusion Model for Instance Segmentation
Eff-B7 NAS-FPN (1280, Copy-Paste pre-training))
38.1
-
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
DiffusionInst-SwinB
36
-
DiffusionInst: Diffusion Model for Instance Segmentation
FRACAL-SwinS
33.6
27.8
Fractal Calibration for long-tailed object detection
SE-R101-FPN-MaskRCNN-APA
30.7
23.6
Adaptive Parametric Activation
FRACAL-SwinT
30.7
25.7
Fractal Calibration for long-tailed object detection
SE-R50-FPN-MaskRCNN-APA
29.1
21.6
Adaptive Parametric Activation
R101-FPN-MaskRCNN-GOL
29.0
-
Long-tailed Instance Segmentation using Gumbel Optimized Loss
Cascade-R101-EQLv2
28.8
-
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection
R101-MaskRCNN-LOCE
28
-
Exploring Classification Equilibrium in Long-Tailed Object Detection
R50-FPN-MaskRCNN-GOL
27.7
-
Long-tailed Instance Segmentation using Gumbel Optimized Loss
R101-FPN-MaskRCNN-EQLv2
27.5
-
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection
0 of 24 row(s) selected.
Previous
Next
Instance Segmentation On Lvis V1 0 Val | SOTA | HyperAI超神経