HyperAI超神経

Instance Segmentation On Coco

評価指標

AP50
AP75
APL
APM
APS
mask AP

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名AP50AP75APLAPMAPSmask AP
centermask-real-time-anchor-free-instance-162.344.157.042.820.140.6
mask-dino-towards-a-unified-transformer-based-1-----54.7
isda-position-aware-instance-segmentation6241.1-41.21738.7
embedmask-embedding-coupling-for-one-stage59.140.3-40.417.937.7
path-aggregation-network-for-instance-----42.0
general-object-foundation-model-for-images-----48.3
virtex-learning-visual-representations-from58.439.7---36.9
ibot-image-bert-pre-training-with-online-----44.2
diffusioninst-diffusion-model-for-instance-----41.5
cbnet-a-novel-composite-backbone-network-----43.3
vision-transformer-adapter-for-dense-----53.0
polarmask-single-shot-instance-segmentation51.9%31%42.8%32.4%13.4%30.4%
detrs-with-collaborative-hybrid-assignments80.263.472.060.141.657.1
gswin-gated-mlp-vision-model-with-----45.03
efficient-multi-order-gated-aggregation-----46
detectors-detecting-objects-with-recursive-171.151.659.649.530.347.1
an-energy-and-gpu-computation-efficient-----40.8%
gcnet-non-local-networks-meet-squeeze-----41.5%
solq-segmenting-objects-by-learning-queries-----39.7
exploring-target-representations-for-masked-----46.2
hybrid-task-cascade-for-instance-segmentation-----41.2%
mask-r-cnn60.039.453.539.916.937.1
rdsnet-a-new-deep-architecture-for-reciprocal57.9%39.0%51.6%39.5%16.4%36.4%
ibot-image-bert-pre-training-with-online-----42.6
centermask-real-time-anchor-free-instance-160.8--41.719.4-
focal-self-attention-for-local-global75.456.564.2-35.651.3
architecture-agnostic-masked-image-modeling-----43.5
centermask-real-time-anchor-free-instance-166.247.4--27.2-
embedmask-embedding-coupling-for-one-stage59.1%40.3%53%40.4%17.9%37.7%
k-net-towards-unified-image-segmentation62.8-58.842.718.740.1%
a-tri-layer-plugin-to-improve-occluded-----45.9
mask-dino-towards-a-unified-transformer-based-1-----52.8
polarmask-enhanced-polar-representation-for64.140.052.040.222.238.7
efficient-multi-order-gated-aggregation-----35.8
centermask-real-time-anchor-free-instance-1-----38.3
eva-exploring-the-limits-of-masked-visual80.0-72.458.036.355.5
istr-end-to-end-instance-segmentation-with--52.341.922.839.9%
solo-segmenting-objects-by-locations62.743.358.943.317.640.4
swin-transformer-hierarchical-vision-----51.1
exploring-target-representations-for-masked-----48.8
k-net-towards-unified-image-segmentation63.3-5943.318.840.6%
resnest-split-attention-networks-----43%
istr-end-to-end-instance-segmentation-with-----49.7
isda-position-aware-instance-segmentation--55.7---
fully-convolutional-instance-aware-semantic54.5%----33.6%
efficient-multi-order-gated-aggregation-----43.2
diffusioninst-diffusion-model-for-instance-----37.1
image-as-a-foreign-language-beit-pretraining-----54.8
solq-segmenting-objects-by-learning-queries-----40.9
fully-convolutional-instance-aware-semantic49.5%-50.0%31.3%7.1%29.2%
general-object-foundation-model-for-images-----53.3
instaboost-boosting-instance-segmentation-via61.4%42.9%52.1%42.5%21.2%39.5%
centermask-real-time-anchor-free-instance-1--54.344.424.441.8
efficient-multi-order-gated-aggregation-----46.1
d2det-towards-high-quality-object-detection61.543.754.043.021.740.2
architecture-agnostic-masked-image-modeling-----34.9
spinenet-learning-scale-permuted-backbone-for-----46.1
efficient-multi-order-gated-aggregation-----42.2
general-object-foundation-model-for-images-----54.5
commonality-parsing-network-across-shape-and60.842.250.141.822.239.2
istr-end-to-end-instance-segmentation-with--50.640.422.138.6%
diffusioninst-diffusion-model-for-instance-----47.6
mask-scoring-r-cnn-----39.6%
solov2-dynamic-faster-and-stronger63.245.161.645.018.041.7
cbnetv2-a-composite-backbone-network-----51.6
centermask-real-time-anchor-free-instance-161.242.9--19.739.6
torchdistill-a-modular-configuration-driven-----33.6
exploring-target-representations-for-masked-----48.3
e2ec-an-end-to-end-contour-based-method-for52.935.9---33.8
masklab-instance-segmentation-by-refining-----38.1%
sipmask-spatial-information-preservation-for60.240.854.340.817.838.1
queryinst-parallelly-supervised-mask-query74.253.863.251.831.549.1
swin-transformer-v2-scaling-up-capacity-and-----54.4
deep-occlusion-aware-instance-segmentation-----41.7
universal-instance-perception-as-object76.256.767.555.933.351.8
hybrid-task-cascade-for-instance-segmentation-----41.2
exploring-target-representations-for-masked-----46.3
global-context-networks68.949.6---45.4
contrastive-learning-rivals-masked-image-----55.4
efficient-multi-order-gated-aggregation-----45.1
solo-segmenting-objects-by-locations62.7%43.3%58.9%43.3%17.6%40.4%
an-energy-and-gpu-computation-efficient-----39.7%
deep-occlusion-aware-instance-segmentation61.242.751.042.322.339.6
vision-transformer-adapter-for-dense-----52.5
cbnetv2-a-composite-backbone-network-----52.3
simple-copy-paste-is-a-strong-data-----46.9
simple-copy-paste-is-a-strong-data-----49.1
vision-transformer-adapter-for-dense-----54.5
efficient-multi-order-gated-aggregation-----44.1
diffusioninst-diffusion-model-for-instance-----48.3
detectors-detecting-objects-with-recursive-172.053.361.550.931.648.5
resnest-split-attention-networks70.251.560.649.630.0-
swin-transformer-hierarchical-vision-----50.2
efficient-multi-order-gated-aggregation-----37.6
yolact-real-time-instance-segmentation-----29.8%
efficient-multi-order-gated-aggregation-----48.8
a-multipath-network-for-object-detection-----25.0%
tensormask-a-foundation-for-dense-object-----37.3%
gswin-gated-mlp-vision-model-with-----42.87
mask-transfiner-for-high-quality-instance-----42.2
gswin-gated-mlp-vision-model-with-----44.16
deep-occlusion-aware-instance-segmentation61.543.151.142.422.739.8
internimage-exploring-large-scale-vision80.862.270.358.941.0-
instance-aware-semantic-segmentation-via44.3%-----
blendmask-top-down-meets-bottom-up-for63.144.654.544.122.741.3
mask-frozen-detr-high-quality-instance79.361.470.458.437.855.3
end-to-end-semi-supervised-object-detection-----53.0
cbnetv2-a-composite-backbone-network80.362.170.959.339.756.1
solq-segmenting-objects-by-learning-queries-----46.7
masked-attention-mask-transformer-for74.954.971.253.829.150.5
polarmask-single-shot-instance-segmentation55.4%33.8%46.3%35.1%15.5%32.9%
efficient-multi-order-gated-aggregation-----39.1