HyperAI
HyperAI超神経
ホーム
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
サイトを検索…
⌘
K
ホーム
SOTA
画像超解像度
Image Super Resolution On Urban100 3X
Image Super Resolution On Urban100 3X
評価指標
PSNR
SSIM
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
PSNR
SSIM
Paper Title
Repository
SwinFIR
30.43
0.8913
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
-
HMA†
31.00
0.8984
HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution
-
HAT
30.70
0.8949
Activating More Pixels in Image Super-Resolution Transformer
-
Hi-IR-L
31.07
0.902
Hierarchical Information Flow for Generalized Efficient Image Restoration
-
IMDN
28.17
-
Lightweight Image Super-Resolution with Information Multi-distillation Network
-
DnCNN-3
27.15
-
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
-
CPAT+
30.63
0.8934
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
ML-CrAIST-Li
28.73
0.8651
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
-
HAN+
29.21
0.8710
Single Image Super-Resolution via a Holistic Attention Network
-
SRFBN
28.73
-
Feedback Network for Image Super-Resolution
-
FACD
28.818
-
Feature-domain Adaptive Contrastive Distillation for Efficient Single Image Super-Resolution
-
IPT
29.49
-
Pre-Trained Image Processing Transformer
-
CSNLN
29.13
0.8712
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
-
LCSCNet
27.24
-
LCSCNet: Linear Compressing Based Skip-Connecting Network for Image Super-Resolution
-
LTE
29.41
-
Local Texture Estimator for Implicit Representation Function
-
HAT-L
30.92
0.8981
Activating More Pixels in Image Super-Resolution Transformer
-
ML-CrAIST
28.89
0.8676
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
-
SwinOIR
28.87
0.8674
Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy
-
HAT_FIR
30.77
-
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
-
CPAT
30.52
0.8923
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
0 of 22 row(s) selected.
Previous
Next