HyperAI超神経

Image Super Resolution On Set14 3X Upscaling

評価指標

PSNR
SSIM

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名PSNRSSIM
hmanet-hybrid-multi-axis-aggregation-network31.470.8585
hierarchical-information-flow-for-generalized31.550.8616
activating-more-pixels-in-image-super31.330.8576
single-image-super-resolution-via-a-holistic30.790.8487
a-framework-for-real-time-object-detection30.650.8493
swinfir-revisiting-the-swinir-with-fast31.240.8566
image-super-resolution-with-cross-scale-non30.660.8482
ml-craist-multi-scale-low-high-frequency30.390.8488
activating-more-pixels-in-image-super31.470.8584
local-texture-estimator-for-implicit30.8-
channel-partitioned-windowed-attention-and31.150.8557
image-restoration-using-convolutional-auto29.610.8341
channel-partitioned-windowed-attention-and31.190.8559
lcscnet-linear-compressing-based-skip29.87-
feedback-network-for-image-super-resolution30.1-
learning-deep-cnn-denoiser-prior-for-image27.72-
progressive-multi-scale-residual-network-for29.240.8087
swinfir-revisiting-the-swinir-with-fast31.37-
pre-trained-image-processing-transformer30.85-
multi-level-wavelet-cnn-for-image-restoration30.16-
lightweight-image-super-resolution-with-130.32-
densely-residual-laplacian-super-resolution30.80.8498
ml-craist-multi-scale-low-high-frequency30.230.8474
beyond-a-gaussian-denoiser-residual-learning29.81-