HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
ホーム
SOTA
画像超解像度
Image Super Resolution On Set14 2X Upscaling
Image Super Resolution On Set14 2X Upscaling
評価指標
PSNR
SSIM
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
PSNR
SSIM
Paper Title
Repository
DRCT-L
35.36
0.9302
DRCT: Saving Image Super-resolution away from Information Bottleneck
HMA†
35.33
0.9297
HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution
HAT-L
35.29
0.9293
Activating More Pixels in Image Super-Resolution Transformer
Hi-IR-L
35.27
0.9311
Hierarchical Information Flow for Generalized Efficient Image Restoration
-
HAT_FIR
35.17
-
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
HAT
35.13
0.9282
Activating More Pixels in Image Super-Resolution Transformer
CPAT+
34.97
0.9280
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
DRCT
34.96
0.9287
DRCT: Saving Image Super-resolution away from Information Bottleneck
SwinFIR
34.93
0.9276
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
CPAT
34.91
0.9277
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
MaIR
34.75
0.9268
MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration
DRLN+
34.43
0.9247
Densely Residual Laplacian Super-Resolution
CSRCNN
34.34
0.9240
Cascade Convolutional Neural Network for Image Super-Resolution
-
LTE
34.25
-
Local Texture Estimator for Implicit Representation Function
HAN+
34.24
0.9224
Single Image Super-Resolution via a Holistic Attention Network
CSNLN
34.12
0.9223
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
DBPN-RES-MR64-3
34.09
0.921
Deep Back-Projection Networks for Single Image Super-resolution
SwinOIR
33.97
0.922
Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy
SRFBN
33.82
-
Feedback Network for Image Super-Resolution
HBPN
33.78
0.921
Hierarchical Back Projection Network for Image Super-Resolution
0 of 35 row(s) selected.
Previous
Next