HyperAI
HyperAI超神経
ホーム
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
サイトを検索…
⌘
K
ホーム
SOTA
画像超解像度
Image Super Resolution On Bsd100 4X Upscaling
Image Super Resolution On Bsd100 4X Upscaling
評価指標
PSNR
SSIM
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
PSNR
SSIM
Paper Title
Repository
HAT
28.05
0.7534
Activating More Pixels in Image Super-Resolution Transformer
-
BSRN
27.57
0.7353
Lightweight and Efficient Image Super-Resolution with Block State-based Recursive Network
-
ProSR
27.79
-
A Fully Progressive Approach to Single-Image Super-Resolution
-
DRCT-L
28.16
0.7577
DRCT: Saving Image Super-resolution away from Information Bottleneck
-
SPSR
25.505
0.6576
Structure-Preserving Super Resolution with Gradient Guidance
-
ZSSR
27.12
0.7211
"Zero-Shot" Super-Resolution using Deep Internal Learning
-
SRGAN
25.16
0.6688
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
-
CSNLN
27.8
0.7439
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
-
Manifold Simplification
27.66
0.7380
Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification
-
SRResNet
27.58
0.762
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
-
DRCT
28.06
0.7533
DRCT: Saving Image Super-resolution away from Information Bottleneck
-
NLRN
27.48
0.7306
Non-Local Recurrent Network for Image Restoration
-
IMDN
27.56
-
Lightweight Image Super-Resolution with Information Multi-distillation Network
-
Config (e)
-
-
One-to-many Approach for Improving Super-Resolution
-
RDN
27.72
0.7419
Residual Dense Network for Image Super-Resolution
-
CPAT+
28.06
0.7532
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
RFN
27.83
-
Progressive Perception-Oriented Network for Single Image Super-Resolution
-
GMFN
27.74
0.7421
Gated Multiple Feedback Network for Image Super-Resolution
WaveMixSR-V2
27.87
0.764
WaveMixSR-V2: Enhancing Super-resolution with Higher Efficiency
-
RL-CSC
27.44
0.7302
Image Super-Resolution via RL-CSC: When Residual Learning Meets Convolutional Sparse Coding
-
0 of 71 row(s) selected.
Previous
Next